
P a g e | 56

FCPIT VDS Saini

10. Concepts of Object Oriented Programming

10.1 Introduction to Classes

The main purpose of C++ programming is to add object orientation to the C programming
language and classes are the central feature of C++ that supports object-oriented
programming and are often called user-defined types.

A class is used to specify the form of an object and it combines data representation and
methods for manipulating that data into one neat package. The data and functions within a
class are called members of the class.

C++ Class Definitions:
When you define a class, you define a blueprint for a data type. This doesn't actually define
any data, but it does define what the class name means, that is, what an object of the class
will consist of and what operations can be performed on such an object.

A class definition starts with the keyword class followed by the class name; and the class
body, enclosed by a pair of curly braces. A class definition must be followed either by a
semicolon or a list of declarations. For example, we defined the Box data type using the
keyword class as follows:

class Box
{

public:
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box

};

The keyword public determines the access attributes of the members of the class that follow
it. A public member can be accessed from outside the class anywhere within the scope of the
class object. You can also specify the members of a class as private or protected which we
will discuss in a sub-section.

10.2 Objects
A class provides the blueprints for objects, so basically an object is created from a class. We
declare objects of a class with exactly the same sort of declaration that we declare variables
of basic types. Following statements declare two objects of class Box:
Box Box1; // Declare Box1 of type Box
Box Box2; // Declare Box2 of type Box

Both of the objects Box1 and Box2 will have their own copy of data members.
Accessing the Data Members:

The public data members of objects of a class can be accessed using the direct member
access operator (.). Let us try the following example to make the things clear:

#include <iostream.h>
#include<conio.h>

class Box

P a g e | 57

FCPIT VDS Saini

{
public:

double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box

};

int main()
{

Box Box1; // Declare Box1 of type Box
Box Box2; // Declare Box2 of type Box
double volume = 0.0; // Store the volume of a box here

// box 1 specification
Box1.height = 5.0;
Box1.length = 6.0;
Box1.breadth = 7.0;

// box 2 specification
Box2.height = 10.0;
Box2.length = 12.0;
Box2.breadth = 13.0;
// volume of box 1
volume = Box1.height * Box1.length * Box1.breadth;
cout << "Volume of Box1 : " << volume <<endl;

// volume of box 2
volume = Box2.height * Box2.length * Box2.breadth;
cout << "Volume of Box2 : " << volume <<endl;
return 0;

}

When the above code is compiled and executed, it produces the following result:
Volume of Box1 : 210
Volume of Box2 : 1560

It is important to note that private and protected members can not be accessed directly
using direct member access operator (.). We will learn how private and protected members
can be accessed.

10.3 Data abstraction

Data abstraction refers to, providing only essential information to the outside world and
hiding their background details, i.e., to represent the needed information in program without
presenting the details.

Data abstraction is a programming (and design) technique that relies on the separation of
interface and implementation.

Let's take one real life example of a TV, which you can turn on and off, change the channel,
adjust the volume, and add external components such as speakers, VCRs, and DVD players,
BUT you do not know its internal details, that is, you do not know how it receives signals over
the air or through a cable, how it translates them, and finally displays them on the screen.

Thus, we can say a television clearly separates its internal implementation from its external
interface and you can play with its interfaces like the power button, channel changer, and
volume control without having zero knowledge of its internals.

P a g e | 58

FCPIT VDS Saini

Now, if we talk in terms of C++ Programming, C++ classes provides great level of data
abstraction. They provide sufficient public methods to the outside world to play with the
functionality of the object and to manipulate object data, i.e., state without actually knowing
how class has been implemented internally.

For example, your program can make a call to the sort() function without knowing what
algorithm the function actually uses to sort the given values. In fact, the underlying
implementation of the sorting functionality could change between releases of the library,
and as long as the interface stays the same, your function call will still work.

In C++, we use classes to define our own abstract data types (ADT). You can use
the cout object of class ostream to stream data to standard output like this:

#include <iostream.h>
#include<conio.h>

int main()
{

cout << "Hello C++" <<endl;
return 0;

}

Here, you don't need to understand how cout displays the text on the user's screen. You
need to only know the public interface and the underlying implementation of cout is free to
change.

Access Labels Enforce Abstraction:

In C++, we use access labels to define the abstract interface to the class. A class may contain
zero or more access labels:

 Members defined with a public label are accessible to all parts of the program. The
data-abstraction view of a type is defined by its public members.

 Members defined with a private label are not accessible to code that uses the class.
The private sections hide the implementation from code that uses the type.

There are no restrictions on how often an access label may appear. Each access label
specifies the access level of the succeeding member definitions. The specified access level
remains in effect until the next access label is encountered or the closing right brace of the
class body is seen.

Benefits of Data Abstraction:

Data abstraction provides two important advantages:

 Class internals are protected from inadvertent user-level errors, which might corrupt
the state of the object.

 The class implementation may evolve over time in response to changing
requirements or bug reports without requiring change in user-level code.

By defining data members only in the private section of the class, the class author is free to
make changes in the data. If the implementation changes, only the class code needs to be

P a g e | 59

FCPIT VDS Saini

examined to see what affect the change may have. If data are public, then any function that
directly accesses the data members of the old representation might be broken.

Data Abstraction Example:

Any C++ program where you implement a class with public and private members is an
example of data abstraction. Consider the following example:

#include <iostream.h>
#include<conio.h>

class Adder{
public:

// constructor
Adder(int i = 0)
{
total = i;

}
// interface to outside world
void addNum(int number)
{

total += number;
}
// interface to outside world
int getTotal()
{

return total;
};

private:
// hidden data from outside world
int total;

};
int main()
{

Adder a;

a.addNum(10);
a.addNum(20);
a.addNum(30);

cout << "Total " << a.getTotal() <<endl;
return 0;

}

When the above code is compiled and executed, it produces the following result:
Total 60

Above class adds numbers together, and returns the sum. The public members
addNum and getTotal are the interfaces to the outside world and a user needs to know them
to use the class. The private member total is something that the user doesn't need to know
about, but is needed for the class to operate properly.

P a g e | 60

FCPIT VDS Saini

10.4 Data encapsulation

C++ programs are composed of the following two fundamental elements:

 Program statements (code): This is the part of a program that performs actions and
they are called functions.

 Program data: The data is the information of the program which affected by the
program functions.

Encapsulation is an Object Oriented Programming concept that binds together the data and
functions that manipulate the data, and that keeps both safe from outside interference and
misuse. Data encapsulation led to the important OOP concept of data hiding.

Data encapsulation is a mechanism of bundling the data, and the functions that use them
and data abstraction is a mechanism of exposing only the interfaces and hiding the
implementation details from the user.

C++ supports the properties of encapsulation and data hiding through the creation of user-
defined types, called classes. We already have studied that a class can contain private,
protected and public members. By default, all items defined in a class are private. For
example:

class Box
{

public:
double getVolume(void)
{

return length * breadth * height;
}

private:
double length; // Length of a box
double breadth; // Breadth of a box
double height; // Height of a box

};

The variables length, breadth, and height are private. This means that they can be accessed
only by other members of the Box class, and not by any other part of your program. This is
one way encapsulation is achieved.
To make parts of a class public (i.e., accessible to other parts of your program), you must
declare them after the public keyword. All variables or functions defined after the public
specifier are accessible by all other functions in your program.

Making one class a friend of another exposes the implementation details and reduces
encapsulation. The ideal is to keep as many of the details of each class hidden from all other
classes as possible.

Data Encapsulation Example:

Any C++ program where you implement a class with public and private members is an
example of data encapsulation and data abstraction. Consider the following example:

P a g e | 61

FCPIT VDS Saini

#include <iostream.h>
#include<conio.h>

class Adder{
public:

// constructor
Adder(int i = 0)
{
total = i;

}
// interface to outside world
void addNum(int number)
{

total += number;
}
// interface to outside world
int getTotal()
{

return total;
};

private:
// hidden data from outside world
int total;

};
int main()
{

Adder a;

a.addNum(10);
a.addNum(20);
a.addNum(30);

cout << "Total " << a.getTotal() <<endl;
return 0;

}

When the above code is compiled and executed, it produces the following result:
Total 60

Above class adds numbers together, and returns the sum. The public members
addNum and getTotal are the interfaces to the outside world and a user needs to know them
to use the class. The private member total is something that is hidden from the outside
world, but is needed for the class to operate properly.

10.5 Inheritance

One of the most important concepts in object-oriented programming is that of inheritance.
Inheritance allows us to define a class in terms of another class, which makes it easier to
create and maintain an application. This also provides an opportunity to reuse the code
functionality and fast implementation time.

When creating a class, instead of writing completely new data members and member
functions, the programmer can designate that the new class should inherit the members of

P a g e | 62

FCPIT VDS Saini

an existing class. This existing class is called the base class, and the new class is referred to as
the derived class.

The idea of inheritance implements the is a relationship. For example, mammal IS-A animal,
dog IS-A mammal hence dog IS-A animal as well and so on.

Base & Derived Classes:

A class can be derived from more than one classes, which means it can inherit data and
functions from multiple base classes. To define a derived class, we use a class derivation list
to specify the base class(es). A class derivation list names one or more base classes and has
the form:

class derived-class: access-specifier base-class

Where access-specifier is one of public, protected, or private, and base-class is the name of a
previously defined class. If the access-specifier is not used, then it is private by default.

Consider a base class Shape and its derived class Rectangle as follows:

#include <iostream.h>
#include<conio.h>

// Base class
class Shape
{

public:
void setWidth(int w)
{

width = w;
}
void setHeight(int h)
{

height = h;
}

protected:
int width;
int height;

};

// Derived class
class Rectangle: public Shape
{

public:
int getArea()
{

return (width * height);
}

};

int main(void)
{

Rectangle Rect;

Rect.setWidth(5);
Rect.setHeight(7);

P a g e | 63

FCPIT VDS Saini

// Print the area of the object.
cout << "Total area: " << Rect.getArea() << endl;

return 0;
}

When the above code is compiled and executed, it produces the following result:

Total area: 35

10.6 Polymorphism.

The word polymorphism means having many forms. Typically, polymorphism occurs when
there is a hierarchy of classes and they are related by inheritance.

C++ polymorphism means that a call to a member function will cause a different function
to be executed depending on the type of object that invokes the function.

Consider the following example where a base class has been derived by other two classes:

#include <iostream.h>
#include<conio.h>

class Shape {
protected:

int width, height;
public:

Shape(int a=0, int b=0)
{

width = a;
height = b;

}
int area()
{

cout << "Parent class area :" <<endl;
return 0;

}
};
class Rectangle: public Shape{

public:
Rectangle(int a=0, int b=0):Shape(a, b) { }
int area ()
{

cout << "Rectangle class area :" <<endl;
return (width * height);

}
};
class Triangle: public Shape{

public:
Triangle(int a=0, int b=0):Shape(a, b) { }
int area ()
{

cout << "Triangle class area :" <<endl;
return (width * height / 2);

}

P a g e | 64

FCPIT VDS Saini

};
// Main function for the program
int main()
{

Shape *shape;
Rectangle rec(10,7);
Triangle tri(10,5);

// store the address of Rectangle
shape = &rec;
// call rectangle area.
shape->area();

// store the address of Triangle
shape = &tri;
// call triangle area.
shape->area();

return 0;
}

When the above code is compiled and executed, it produces the following result:
Parent class area
Parent class area

The reason for the incorrect output is that the call of the function area() is being set once
by the compiler as the version defined in the base class. This is called static resolution of
the function call, or static linkage - the function call is fixed before the program is
executed. This is also sometimes called early binding because the area() function is set
during the compilation of the program.

